
Introduction to

Artificial Intelligence

Chapter 14

Probabilistic Reasoning over Time

Wei-Ta Chu (朱威達)

1

• We have mentioned probabilistic reasoning in the context of static worlds.

• Now consider a slightly different problem: treating a diabetic (糖尿病) patient.

We have evidence such as recent insulin doses (胰島素劑量), food intake (攝

取), blood sugar measurements, and other physical signs. The task is to assess

the current state of the patient, including the actual blood sugar level and

insulin level. Given this information, we can make a decision about the

patient’s food intake and insulin dose.

• Blood sugar levels and measurements thereof can change rapidly over time.

We must model these changes.

Time and Uncertainty

2

• We view the world as a series of snapshots, or time slices, each of which

contains a set of random variables, some observable and some not.

• We assume some subset of variables is observable in each time slice. We will

use Xt to denote the set of state variables at time t, which are assumed to be

unobservable, and Et to denote the set of observable evidence variables. The

observation at time t is Et = et for some set of values et.

States and observations

3

• You are the security guard stationed at a secret underground installation. You

want to know whether it’s raining today, but your only access to the outside

world occurs each morning when you see the director coming in with, or

without, an umbrella.

• For each day t, the set Et thus contains a single evidence variable Umbrellat or

Ut for short, and the set Xt contains a single state variable Raint or Rt for short.

States and observations

4

• The interval between time slices also depends on the problem. For diabetes

monitoring, a suitable interval might be an hour rather than a day. In this

chapter we assume the interval between slices is fixed, so we can label times

by integers.

• Our umbrella world is represented by state variables R0, R1, R2, … and

evidence variables U1, U2, ... We will use the notation a:b to denote the

sequence of integers from a to b (inclusive), and the notation Xa:b to denote the

set of variables from Xa to Xb.

States and observations

5

• The transition model specifies the probability distribution over the latest state

variables, given the previous values, that is, P(Xt | X0:t−1).

• Now we face a problem: the set X0:t−1 is unbounded in size as t increases. We

solve the problem by making a Markov assumption— that the current state

depends on only a finite fixed number of previous states.

• The simplest case: the first-order Markov process, in which the current state

depends only on the previous state and not on any earlier states.

Transition and sensor models

6

• With first-order Markov assumption, we have

• Hence, in a first-order Markov process, the transition model is the conditional

distribution P(Xt | Xt−1). The transition model for a second-order Markov

process is the conditional distribution P(Xt | Xt−2, Xt−1).

• Figure 15.1 shows the Bayesian network structures corresponding to first-

order and second-order Markov processes.

Transition and sensor models

7

Transition and sensor models

8

• Even with the Markov assumption there is still a problem: there are infinitely

many possible values of t. Do we need to specify a different distribution for

each time step?

• We avoid this problem by assuming that changes in the world state are caused

by a stationary process—that is, a process of change that is governed by laws

that do not themselves change over time. (Don’t confuse stationary with static:

in a static process, the state itself does not change.)

• In the umbrella world, then, the conditional probability of rain, P(Rt | Rt−1), is

the same for all t, and we only have to specify one conditional probability

table.

Transition and sensor models

9

• The sensor model: The evidence variables Et could depend on previous

variables as well as the current state variables. But, we make a sensor Markov

assumption as follows:

Thus, P(Et | Xt) is our sensor model (sometimes called the observation

model).

• Figure 15.2 shows both the transition model and the sensor model for the

umbrella example.

Transition and sensor models

10

Transition and sensor models

11

• Further, we need to say how everything gets started—the prior probability

distribution at time 0, P(X0). With that, we have a specification of the

complete joint distribution over all the variables, using Equation (14.2). For

any t,

The three terms on the right-hand side are the initial state model P(X0), the

transition model P(Xi | Xi−1), and the sensor model P(Ei | Xi).

Transition and sensor models

12

(15.3)

• First-order Markov process—the probability of rain is assumed to depend only

on whether it rained the previous day. Whether such an assumption is

reasonable depends on the domain itself. Sometimes the assumption is exactly

true.

Transition and sensor models

13

• Sometimes the assumption is only approximate. There are two ways to

improve the accuracy of the approximation:

• Increasing the order of the Markov process model. For example, we could

make a second-order model by adding Raint−2 as a parent of Raint.

• Increasing the set of state variables. For example, we could add Seasont to

allow us to incorporate historical records of rainy seasons, or we could

add Temperaturet, Humidityt and Pressuret to allow us to use a physical

model of rainy conditions.

Transition and sensor models

14

• We can formulate the basic inference tasks that must be solved:

• Filtering: This is the task of computing the belief state—the posterior

distribution over the most recent state—given all evidence to date.

Filtering is also called state estimation. In our example, we wish to

compute P(Xt | e1:t). In the umbrella example, this would mean computing

the probability of rain today, given all the observations of the umbrella

carrier made so far.

Inference in Temporal Models

15

• We can formulate the basic inference tasks that must be solved:

• Prediction: This is the task of computing the posterior distribution over

the future state, given all evidence to date. That is, we wish to compute

P(Xt+k | e1:t) for some k > 0. In the umbrella example, this might mean

computing the probability of rain three days from now, given all the

observations to date.

Inference in Temporal Models

16

• We can formulate the basic inference tasks that must be solved:

• Smoothing: This is the task of computing the posterior distribution over a

past state, given all evidence up to the present. That is, we wish to

compute P(Xk | e1:t) for some k such that 0 ≤ k < t. In the umbrella

example, it might mean computing the probability that it rained last

Wednesday, given all the observations of the umbrella carrier made up to

today. Smoothing provides a better estimate of the state than was available

at the time, because it incorporates more evidence.

Inference in Temporal Models

17

• We can formulate the basic inference tasks that must be solved:

• Most likely explanation: Given a sequence of observations, we might

wish to find the sequence of states that is most likely to have generated

those observations. That is, we wish to compute argmaxx1:t P(x1:t | e1:t).

For example, if the umbrella appears on each of the first three days and is

absent on the fourth, then the most likely explanation is that it rained on

the first three days and did not rain on the fourth. Algorithms for this task

are useful in many applications, including speech recognition—where the

aim is to find the most likely sequence of words, given a series of sounds.

Inference in Temporal Models

18

• In addition to these inference tasks, we also have

• Learning: The transition and sensor models can be learned from

observations.

The overall process is an instance of the expectation-maximization

or EM algorithm.

Inference in Temporal Models

19

• A useful filtering algorithm needs to maintain a current state estimate and

update it, rather than going back over the entire history of percepts for each

update.

• In other words, given the result of filtering up to time t, the agent needs to

compute the result for t + 1 from the new evidence et+1,

for some function f.

Filtering and prediction

20

• This process is called recursive estimation. We can view the calculation as

being composed of two parts: first, the current state distribution is projected

forward from t to t+1; then it is updated using the new evidence et+1. This two-

part process emerges quite simply when the formula is rearranged:

Filtering and prediction

21

• α is a normalizing constant used to make probabilities sum up to 1. The second

term, P(Xt+1 | e1:t) represents a one-step prediction of the next state, and

P(et+1 | Xt+1) is obtainable directly from the sensor model. Now we obtain the

one-step prediction for the next state by conditioning on the current state Xt:

Filtering and prediction

22

• Within the summation, the first factor comes from the transition model and the

second comes from the current state distribution. Hence, we have the desired

recursive formulation. We can think of the filtered estimate P(Xt | e1:t) as a

“message” f1:t that is propagated forward along the sequence, modified by each

transition and updated by each new observation. The process is given by

where FORWARD implements the update described in Equation (15.5) and the

process begins with f1:0 = P(X0).

Filtering and prediction

23

Filtering and prediction

24

Filtering and prediction

25

Intuitively, the probability of rain increases from day 1 to day 2 because rain persists.

• The task of prediction can be seen simply as filtering without the addition of

new evidence. In fact, the filtering process already incorporates a one-step

prediction, and it is easy to derive the following recursive computation for

predicting the state at t + k + 1 from a prediction for t + k:

Naturally, this computation involves only the transition model and not the

sensor model.

Filtering and prediction

26

• Smoothing is the process of computing the distribution over past states given

evidence up to the present; that is, P(Xk | e1:t) for 0 ≤ k < t. (See Figure 15.3.)

In anticipation of another recursive message-passing approach, we can split

the computation into two parts—the evidence up to k and the evidence from

k + 1 to t,

where “×” represents pointwise multiplication of vectors.

Smoothing

28

Smoothing

29

• Here we have defined a “backward” message bk+1:t = P(ek+1:t | Xk), analogous

to the forward message f1:k. The forward message f1:k can be computed by

filtering forward from 1 to k. It turns out that the backward message bk+1:t can

be computed by a recursive process that runs backward from t:

Smoothing

30

• The last step follows by the conditional independence of ek+1 and ek+2:t, given

Xk+1. Of the three factors in this summation, the first and third are obtained

directly from the model, and the second is the “recursive call.” Using the

message notation, we have

where BACKWARD implements the update described in Equation (15.9).

Smoothing

31

• We can now see that the two terms in Equation (15.8) can both be computed

by recursions through time, one running forward from 1 to k and using the

filtering equation (15.5) and the other running backward from t to k + 1 and

using Equation (15.9).

• The backward phase is initialized with bt+1:t = P(et+1:t | Xt) = P(| Xt)1, where 1

is a vector of 1s. (Because et+1:t is an empty sequence, the probability of

observing it is 1.)

Smoothing

32

Smoothing

33

• Thus, the smoothed estimate for rain on day 1 is higher than the filtered

estimate (0.818) in this case. This is because the umbrella on day 2 makes it

more likely to have rained on day 2; in turn, because rain tends to persist, that

makes it more likely to have rained on day 1.

• Both the forward and backward recursions take a constant amount of time per

step; hence, the time complexity of smoothing with respect to evidence e1:t is

O(t). This is the complexity for smoothing at a particular time step k. If we

want to smooth the whole sequence, one obvious method is simply to run the

whole smoothing process once for each time step to be smoothed. This results

in a time complexity of O(t2).

Smoothing

34

• A better approach uses dynamic programming to reduce the complexity to O(t).

• The key to the linear-time algorithm is to record the results of forward filtering

over the whole sequence. Then we run the backward recursion from t down to

1, computing the smoothed estimate at each step k from the computed back-

ward message bk+1:t and the stored forward message f1:k. The algorithm alled

the forward–backward algorithm is shown in Figure 15.4.

Smoothing

35

Smoothing

36

• Suppose that [true, true, false, true, true] is the umbrella sequence for the

security guard’s first five days on the job.

• In all, there are 25 possible weather sequences we could pick. Is there a way to

find the most likely one, short of enumerating all of them?

• We could try this linear-time procedure: use smoothing to find the posterior

distribution for the weather at each time step; then construct the sequence,

using at each step the weather that is most likely according to the posterior.

Finding the most likely sequence

39

• View each sequence as a path through a graph whose nodes are the possible

states at each time step. Such a graph is shown for the umbrella world in

Figure 15.5(a).

• Consider the task of finding the most likely path through this graph, where the

likelihood of any path is the product of the transition probabilities along the

path and the probabilities of the given observations at each state.

Finding the most likely sequence

40

Finding the most likely sequence

41

• Let’s focus on paths that reach the state Rain5 =true. Because of the Markov

property, the most likely path to the state Rain5 =true consists of the most

likely path to some state at time 4 followed by a transition to Rain5 =true; and

the state at time 4 that will become part of the path to Rain5 =true is whichever

maximizes the likelihood of that path. In other words, there is a recursive

relationship between most likely paths to each state xt+1 and most likely paths

to each state xt.

Finding the most likely sequence

42

• Equation (15.11) is identical to the filtering equation (15.5) except that

Finding the most likely sequence

43

• Thus, the algorithm for computing the most likely sequence is similar to

filtering: it runs forward along the sequence, computing the m message at each

time step, using Equation (15.11). The progress of this computation is shown

in Figure 15.5(b). At the end, it will have the probability for the most likely

sequence reaching each of the final states. One can thus easily select the most

likely sequence overall (the states outlined in bold).

• The optimal sequence is identified by following these bold arrows backwards

from the best final state.

Finding the most likely sequence

44

• The algorithm we have just described is called the Viterbi algorithm. Like the

filtering algorithm, its time complexity is linear in t, the length of the sequence.

Unlike filtering, which uses constant space, its space requirement is also linear

in t. This is because the Viterbi algorithm needs to keep the pointers that

identify the best sequence leading to each state.

Finding the most likely sequence

45

• An HMM is a temporal probabilistic model in which the state of the process is

described by a single discrete random variable. The possible values of the

variable are the possible states of the world.

• The umbrella example described in the preceding section is therefore an HMM,

since it has just one state variable: Raint. What happens if you have a model

with two or more state variables? You can still fit it into the HMM framework

by combining the variables into a single “megavariable” whose values are all

possible tuples of values of the individual state variables.

Hidden Markov Models

46

• Here we make the vacuum problem slightly more realistic by including a

simple probability model for the robot’s motion and by allowing for noise in

the sensors. The state variable Xt represents the location of the robot on the

discrete grid; the domain of this variable is the set of empty squares {s1, . . . ,

sn}. Let NEIGHBORS(s) be the set of empty squares that are adjacent to s and

let N(s) be the size of that set. Then the transition model for Move action says

that the robot is equally likely to end up at any neighboring square:

HMM example: Localization

59

• We don’t know where the robot starts, so we will assume a uniform

distribution over all the squares; that is, P(X0 = i) = 1/n. For the particular

environment we consider (Figure 15.7), n = 42 and the transition matrix T has

42 × 42 = 1764 entries.

HMM example: Localization

60

HMM example: Localization

61

• The sensor variable Et has 16 possible values, each a four-bit sequence giving

the presence or absence of an obstacle in a particular compass direction. We

will use the notation NS, for example, to mean that the north and south sensors

report an obstacle and the east and west do not. Suppose that each sensor’s

error rate is ε and that errors occur independently for the four sensor directions.

In that case, the probability of getting all four bits right is (1 − ε)4 and the

probability of getting them all wrong is ε4 . Furthermore, if dit is the

discrepancy—the number of bits that are different—between the true values

for square i and the actual reading et, then the probability that a robot in square

i would receive a sensor reading et is

HMM example: Localization

62

• For example, the probability that a square with obstacles to the north and south

would produce a sensor reading NSE is (1−ε)3ε1.

• Given the matrices T and Ot, the robot can compute the posterior distribution

over locations to work out where it is.

• Figure 15.7 shows the distributions P(X1 |E1 =NSW) and P(X2 |E1 =NSW, E2

=NS).

HMM example: Localization

63

• In addition to filtering to estimate its current location, the robot can use

smoothing to work out where it was at any given past time and it can use the

Viterbi algorithm to work out the most likely path it has taken to get where it is

now.

• Figure 15.8 shows the localization error and Viterbi path accuracy for various

values of the per-bit sensor error rate ε. Even when ε is 20%—which means

that the overall sensor reading is wrong 59% of the time—the robot is usually

able to work out its location within two squares after 25 observations.

HMM example: Localization

64

HMM example: Localization

65

• This is because of the algorithm’s ability to integrate evidence over time and to

take into account the probabilistic constraints imposed on the location

sequence by the transition model. When ε is 10%, the performance after a half-

dozen observations is hard to distinguish from the performance with perfect

sensing.

• Broadly speaking, high levels of localization and path accuracy are maintained

even in the face of substantial errors in the models used.

HMM example: Localization

66

• Imagine watching a small bird flying through dense jungle foliage at dusk: you

glimpse brief, intermittent flashes of motion; you try hard to guess where the

bird is and where it will appear next so that you don’t lose it. Or imagine that

you are a World War II radar operator peering at a faint, wandering blip that

appears once every 10 seconds on the screen.

• In all these cases, you are doing filtering: estimating state variables (here,

position and velocity) from noisy observations over time. If the variables were

discrete, we could model the system with a hidden Markov model. This

section examines methods for handling continuous variables, using an

algorithm called Kalman filtering.

Kalman Filters

67

• The bird’s flight might be specified by six continuous variables at each time

point; three for position (Xt, Yt, Zt) and three for velocity (Xt, Yt, Zt). We will

need suitable conditional densities to represent the transition and sensor

models: linear Gaussian distributions. The next state Xt+1 must be a linear

function of the current state Xt, plus some Gaussian noise. Consider the X-

coordinate of the bird. Let the time interval between observations be Δ, and

assume constant velocity during the interval; then the position update is given

by Xt+Δ = Xt +XtΔ. Adding Gaussian noise, we obtain a linear Gaussian

transition model:

Kalman Filters

68

• The Bayesian network structure for a system with position vector Xt and

velocity Xt is shown in Figure 15.9.

• A multivariate Gaussian distribution for d variables is specified by a d-element

mean μ and a d × d covariance matrix Σ.

Kalman Filters

69

• A key property of the linear Gaussian family of distributions: it remains closed

under the standard Bayesian network operations.

Updating Gaussian distributions

70

• Thus, the FORWARD operator for Kalman filtering takes a Gaussian forward

message f1:t, specified by a mean μt and covariance matrix Σt, and produces a

new multivariate Gaussian forward message f1:t+1, specified by a mean μt+1 and

covariance matrix Σt+1.

• So, if we start with a Gaussian prior f1:0 = P(X0) = N(μ0, Σ0), filtering with a

linear Gaussian model produces a Gaussian state distribution for all time.

Updating Gaussian distributions

71

• The temporal model we consider describes a random walk of a single

continuous state variable Xt with a noisy observation Zt.

• An example might be the “consumer confidence” index, which can be

modeled as undergoing a random Gaussian-distributed change each month and

is measured by a random consumer survey that also introduces Gaussian

sampling noise.

A simple one-dimensional example

72

A simple one-dimensional example

73

A simple one-dimensional example

74

A simple one-dimensional example

75

(15.19)

• To complete the update step, we need to condition on the observation at the

first time step, namely, z1. From Equation (15.18), this is given by

• Once again, we combine the exponents and complete the square, obtaining

Thus, after one update cycle, we have a new Gaussian distribution for the state

variable.

• From the Gaussian formula in Equation (15.19), we see that the new mean and

standard deviation can be calculated from the old mean and standard deviation

as follows:

• Figure 15.10 shows one update cycle for particular values of the transition and

sensor models.

A simple one-dimensional example

76

(15.20)

A simple one-dimensional example

77

• Equation (15.20) has some interesting additional properties.

• First, we can interpret the calculation for the new mean μt+1 as simply a

weighted mean of the new observation zt+1 and the old mean μt. If the

observation is unreliable, then σz
2 is large and we pay more attention to the old

mean; if the old mean is unreliable (σt
2 is large) or the process is highly

unpredictable (σx
2 is large), then we pay more attention to the observation.

A simple one-dimensional example

78

• Second, notice that the update for the variance σt+1
2 is independent of the

observation. We can therefore compute in advance what the sequence of

variance values will be.

• Third, the sequence of variance values converges quickly to a fixed value that

depends only on σx
2 and σz

2, thereby substantially simplifying the subsequent

calculations.

A simple one-dimensional example

79

• The preceding derivation illustrates the key property of Gaussian distributions

that allows Kalman filtering to work: the fact that the exponent is a quadratic

form. This is true not just for the univariate case; the full multivariate Gaussian

distribution has the form

• Multiplying out the terms in the exponent makes it clear that the exponent is

also a quadratic function of the values xi in x. As in the univariate case, the

filtering update preserves the Gaussian nature of the state distribution.

The general case

80

• Let us first define the general temporal model used with Kalman filtering.

Both the transition model and the sensor model allow for a linear

transformation with additive Gaussian noise. Thus, we have

• where F and Σx are matrices describing the linear transition model and

transition noise covariance, and H and Σz are the corresponding matrices for

the sensor model.

The general case

81

The general case

82

• Now the update equations for the mean and covariance are

where

is called the Kalman gain matrix.

• Consider the update for the mean state estimate μ. The term Fμt is the

predicted state at t+1, so HFμt is the predicted observation. Therefore, the

term zt+1 − HFμt represents the error in the predicted observation. This is

multiplied by Kt+1 to correct the predicted state; hence, Kt+1 is a measure of

how seriously to take the new observation relative to the prediction.

• To illustrate these equations at work, we have applied them to the problem of

tracking an object moving on the X–Y plane. The state variables are X = (X, Y,

X, Y)T , so F, Σx, H, and Σz are 4×4 matrices.

• Figure 15.11(a) shows the true trajectory, a series of noisy observations, and

the trajectory estimated by Kalman filtering, along with the covariances

indicated by the one-standard-deviation contours. The filtering process does a

good job of tracking the actual motion, and, as expected, the variance quickly

reaches a fixed point.

The general case

83

The general case

84

• We can also derive equations for smoothing as well as filtering with linear

Gaussian models. The smoothing results are shown in Figure 15.11(b). Notice

how the variance in the position estimate is sharply reduced, except at the

ends of the trajectory, and that the estimated trajectory is much smoother.

The general case

85

• The “classical” application is in radar tracking of aircraft and missiles.

Related applications include acoustic tracking of submarines and ground

vehicles and visual tracking of vehicles and people.

• The range of application is much larger than just the tracking of motion: any

system characterized by continuous state variables and noisy measurements

will do. Such systems include pulp mills, chemical plants, nuclear reactors,

plant ecosystems, and national economies.

Applicability of Kalman filtering

86

• In this section, we see what happens when two or more objects generate the

observations. What makes this case different from plain old state estimation is

that there is now the possibility of uncertainty about which object generated

which observation.

• In the control theory literature, this is the data association problem—that is,

the problem of associating observation data with the objects that generated

them.

Keeping Track of Many Objects

127

• The data association problem was studied originally in the context of radar

tracking, where reflected pulses are detected at fixed time intervals by a

rotating radar antenna. At each time step, multiple blips may appear on the

screen, but there is no direct observation of which blips at time t belong to

which blips at time t − 1.

• Figure 15.19(a) shows a simple example with two blips per time step for five

steps. Let the two blip locations at time t be et
1 and et

2. Let us assume, for the

time being, that exactly two aircraft, A and B, generated the blips; their true

positions are Xt
A and Xt

B. Just to keep things simple, we’ll also assume that the

each aircraft moves independently according to a known transition model.

Keeping Track of Many Objects

128

Keeping Track of Many Objects

129

• Suppose we try to write down the overall probability model for this scenario,

just as we did for general temporal processes in Equation (15.3). As usual, the

joint distribution factors into contributions for each time step as follows:

Keeping Track of Many Objects

130

(15.24)

• We would like to factor the observation term into a product

of two terms, one for each object, but this would require knowing which

observation was generated by which object. Instead, we have to sum over all

possible ways of associating the observations with the objects.

• Some of those ways are shown in Figure 15.19(b–c); in general, for n objects

and T time steps, there are (n!)T ways of doing it—an awfully large number.

Keeping Track of Many Objects

131

• We’ll write ωt to denote the one-to-one mapping from objects to observations

at time t, with ωt(A) and ωt(B) denoting the specific observations (1 or 2) that

ωt assigns to A and B. (For n objects, ωt will have n! possible values; here,

n!=2.)

• Because the labels “1” and “2” on the observations are assigned arbitrarily,

the prior on ωt is uniform and ωt is independent of the states of the objects, xt
A

and xt
B.

Keeping Track of Many Objects

132

Keeping Track of Many Objects

133

Plugging this into Equation (15.24), we get an expression that is only in terms of

transition and sensor models for individual objects and observations.

So we can condition the observation term on ωt and then simplify:

• As for all probability models, inference means summing out the variables

other than the query and the evidence. For filtering in HMMs and DBNs, we

were able to sum out the state variables from 1 to t − 1 by a simple dynamic

programming trick; for Kalman filters, we took advantage of special

properties of Gaussians.

• For data association, we are less fortunate. There is no (known) efficient exact

algorithm, for the same reason that there is none for the switching Kalman

filter.

Keeping Track of Many Objects

134

• As a result of the complexity of exact inference, many different approximate

methods have been used. The simplest approach is to choose a single “best”

assignment at each time step, given the predicted positions of the objects at

the current time step. This assignment associates observations with objects

and enables the track of each object to be updated and a prediction made for

the next time step.

• For choosing the “best” assignment, it is common to use the so-called

nearest-neighbor filter, which repeatedly chooses the closest pairing of

predicted position and observation and adds that pairing to the assignment.

Keeping Track of Many Objects

135

• The nearest-neighbor filter works well when the objects are well separated in

state space and the prediction uncertainty and observation error are small.

• When there is more uncertainty as to the correct assignment, a better approach

is to choose the assignment that maximizes the joint probability of the current

observations given the predicted positions. This can be done very efficiently

using the Hungarian algorithm, even though there are n! assignments to

choose from.

Keeping Track of Many Objects

136

• Any method that commits to a single best assignment at each time step fails

miserably under more difficult conditions. In particular, if the algorithm

commits to an incorrect assignment, the prediction at the next time step may

be significantly wrong, leading to more incorrect assignments, and so on.

• Two modern approaches turn out to be much more effective. A particle

filtering algorithm for data association works by maintaining a large

collection of possible current assignments.

Keeping Track of Many Objects

137

• An MCMC algorithm explores the space of assignment histories—for

example, Figure 15.19(b–c) might be states in the MCMC state space—and

can change its mind about previous assignment decisions. Current MCMC

data association methods can handle many hundreds of objects in real time

while giving a good approximation to the true posterior distributions.

Keeping Track of Many Objects

138

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138

