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• We have mentioned probabilistic reasoning in the context of static worlds. 

• Now consider a slightly different problem: treating a diabetic (糖尿病) patient. 

We have evidence such as recent insulin doses (胰島素劑量), food intake (攝

取), blood sugar measurements, and other physical signs. The task is to assess 

the current state of the patient, including the actual blood sugar level and 

insulin level. Given this information, we can make a decision about the 

patient’s food intake and insulin dose. 

• Blood sugar levels and measurements thereof can change rapidly over time. 

We must model these changes.

Time and Uncertainty
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• We view the world as a series of snapshots, or time slices, each of which 

contains a set of random variables, some observable and some not. 

• We assume some subset of variables is observable in each time slice. We will 

use Xt to denote the set of state variables at time t, which are assumed to be 

unobservable, and Et to denote the set of observable evidence variables. The 

observation at time t is Et = et for some set of values et.

States and observations
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• You are the security guard stationed at a secret underground installation. You 

want to know whether it’s raining today, but your only access to the outside 

world occurs each morning when you see the director coming in with, or 

without, an umbrella. 

• For each day t, the set Et thus contains a single evidence variable Umbrellat or 

Ut for short, and the set Xt contains a single state variable Raint or Rt for short. 

States and observations
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• The interval between time slices also depends on the problem. For diabetes 

monitoring, a suitable interval might be an hour rather than a day. In this 

chapter we assume the interval between slices is fixed, so we can label times 

by integers. 

• Our umbrella world is represented by state variables R0, R1, R2, … and 

evidence variables U1, U2, ... We will use the notation a:b to denote the 

sequence of integers from a to b (inclusive), and the notation Xa:b to denote the 

set of variables from Xa to Xb. 

States and observations
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• The transition model specifies the probability distribution over the latest state 

variables, given the previous values, that is, P(Xt | X0:t−1). 

• Now we face a problem: the set X0:t−1 is unbounded in size as t increases. We 

solve the problem by making a Markov assumption— that the current state 

depends on only a finite fixed number of previous states. 

• The simplest case: the first-order Markov process, in which the current state 

depends only on the previous state and not on any earlier states. 

Transition and sensor models
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• With first-order Markov assumption, we have

• Hence, in a first-order Markov process, the transition model is the conditional 

distribution P(Xt | Xt−1). The transition model for a second-order Markov 

process is the conditional distribution P(Xt | Xt−2, Xt−1). 

• Figure 15.1 shows the Bayesian network structures corresponding to first-

order and second-order Markov processes.

Transition and sensor models
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Transition and sensor models
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• Even with the Markov assumption there is still a problem: there are infinitely 

many possible values of t. Do we need to specify a different distribution for 

each time step? 

• We avoid this problem by assuming that changes in the world state are caused 

by a stationary process—that is, a process of change that is governed by laws 

that do not themselves change over time. (Don’t confuse stationary with static: 

in a static process, the state itself does not change.) 

• In the umbrella world, then, the conditional probability of rain, P(Rt | Rt−1), is 

the same for all t, and we only have to specify one conditional probability 

table.

Transition and sensor models
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• The sensor model: The evidence variables Et could depend on previous 

variables as well as the current state variables. But, we make a sensor Markov 

assumption as follows:

Thus, P(Et | Xt) is our sensor model (sometimes called the observation 

model). 

• Figure 15.2 shows both the transition model and the sensor model for the 

umbrella example.

Transition and sensor models
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Transition and sensor models
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• Further, we need to say how everything gets started—the prior probability 

distribution at time 0, P(X0). With that, we have a specification of the 

complete joint distribution over all the variables, using Equation (14.2). For 

any t,

The three terms on the right-hand side are the initial state model P(X0), the 

transition model P(Xi | Xi−1), and the sensor model P(Ei | Xi).

Transition and sensor models

12

(15.3)



• First-order Markov process—the probability of rain is assumed to depend only 

on whether it rained the previous day. Whether such an assumption is 

reasonable depends on the domain itself. Sometimes the assumption is exactly 

true.

Transition and sensor models
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• Sometimes the assumption is only approximate. There are two ways to 

improve the accuracy of the approximation: 

• Increasing the order of the Markov process model. For example, we could 

make a second-order model by adding Raint−2 as a parent of Raint. 

• Increasing the set of state variables. For example, we could add Seasont to 

allow us to incorporate historical records of rainy seasons, or we could 

add Temperaturet, Humidityt and Pressuret to allow us to use a physical 

model of rainy conditions.

Transition and sensor models
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• We can formulate the basic inference tasks that must be solved:

• Filtering: This is the task of computing the belief state—the posterior 

distribution over the most recent state—given all evidence to date. 

Filtering is also called state estimation. In our example, we wish to 

compute P(Xt | e1:t). In the umbrella example, this would mean computing 

the probability of rain today, given all the observations of the umbrella 

carrier made so far. 

Inference in Temporal Models
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• We can formulate the basic inference tasks that must be solved:

• Prediction: This is the task of computing the posterior distribution over 

the future state, given all evidence to date. That is, we wish to compute 

P(Xt+k | e1:t) for some k > 0. In the umbrella example, this might mean 

computing the probability of rain three days from now, given all the 

observations to date. 

Inference in Temporal Models
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• We can formulate the basic inference tasks that must be solved:

• Smoothing: This is the task of computing the posterior distribution over a 

past state, given all evidence up to the present. That is, we wish to 

compute P(Xk | e1:t) for some k such that 0 ≤ k < t. In the umbrella 

example, it might mean computing the probability that it rained last 

Wednesday, given all the observations of the umbrella carrier made up to 

today. Smoothing provides a better estimate of the state than was available 

at the time, because it incorporates more evidence. 

Inference in Temporal Models
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• We can formulate the basic inference tasks that must be solved:

• Most likely explanation: Given a sequence of observations, we might 

wish to find the sequence of states that is most likely to have generated 

those observations. That is, we wish to compute argmaxx1:t P(x1:t | e1:t). 

For example, if the umbrella appears on each of the first three days and is 

absent on the fourth, then the most likely explanation is that it rained on 

the first three days and did not rain on the fourth. Algorithms for this task 

are useful in many applications, including speech recognition—where the 

aim is to find the most likely sequence of words, given a series of sounds.

Inference in Temporal Models
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• In addition to these inference tasks, we also have

• Learning: The transition and sensor models can be learned from 

observations.  

The overall process is an instance of the expectation-maximization 

or EM algorithm. 

Inference in Temporal Models
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• A useful filtering algorithm needs to maintain a current state estimate and 

update it, rather than going back over the entire history of percepts for each 

update. 

• In other words, given the result of filtering up to time t, the agent needs to 

compute the result for t + 1 from the new evidence et+1,

for some function f. 

Filtering and prediction
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• This process is called recursive estimation. We can view the calculation as 

being composed of two parts: first, the current state distribution is projected 

forward from t to t+1; then it is updated using the new evidence et+1. This two-

part process emerges quite simply when the formula is rearranged: 

Filtering and prediction
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• α is a normalizing constant used to make probabilities sum up to 1. The second 

term, P(Xt+1 | e1:t) represents a one-step prediction of the next state, and 

P(et+1 | Xt+1) is obtainable directly from the sensor model. Now we obtain the 

one-step prediction for the next state by conditioning on the current state Xt: 

Filtering and prediction
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• Within the summation, the first factor comes from the transition model and the 

second comes from the current state distribution. Hence, we have the desired 

recursive formulation. We can think of the filtered estimate P(Xt | e1:t) as a 

“message” f1:t that is propagated forward along the sequence, modified by each 

transition and updated by each new observation. The process is given by

where FORWARD implements the update described in Equation (15.5) and the 

process begins with f1:0 = P(X0). 

Filtering and prediction
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Filtering and prediction
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Filtering and prediction
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Intuitively, the probability of rain increases from day 1 to day 2 because rain persists. 



• The task of prediction can be seen simply as filtering without the addition of 

new evidence. In fact, the filtering process already incorporates a one-step 

prediction, and it is easy to derive the following recursive computation for 

predicting the state at t + k + 1 from a prediction for t + k:

Naturally, this computation involves only the transition model and not the 

sensor model.

Filtering and prediction
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• Smoothing is the process of computing the distribution over past states given 

evidence up to the present; that is, P(Xk | e1:t) for 0 ≤ k < t. (See Figure 15.3.) 

In anticipation of another recursive message-passing approach, we can split 

the computation into two parts—the evidence up to k and the evidence from 

k + 1 to t,

where “×” represents pointwise multiplication of vectors.

Smoothing
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Smoothing

29



• Here we have defined a “backward” message bk+1:t = P(ek+1:t | Xk ), analogous 

to the forward message f1:k. The forward message f1:k can be computed by 

filtering forward from 1 to k. It turns out that the backward message bk+1:t can 

be computed by a recursive process that runs backward from t:

Smoothing
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• The last step follows by the conditional independence of ek+1 and ek+2:t, given 

Xk+1. Of the three factors in this summation, the first and third are obtained 

directly from the model, and the second is the “recursive call.” Using the 

message notation, we have

where BACKWARD implements the update described in Equation (15.9). 

Smoothing
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• We can now see that the two terms in Equation (15.8) can both be computed 

by recursions through time, one running forward from 1 to k and using the 

filtering equation (15.5) and the other running backward from t to k + 1 and 

using Equation (15.9). 

• The backward phase is initialized with bt+1:t = P(et+1:t | Xt) = P( | Xt)1, where 1

is a vector of 1s. (Because et+1:t is an empty sequence, the probability of 

observing it is 1.)

Smoothing
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Smoothing
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• Thus, the smoothed estimate for rain on day 1 is higher than the filtered 

estimate (0.818) in this case. This is because the umbrella on day 2 makes it 

more likely to have rained on day 2; in turn, because rain tends to persist, that 

makes it more likely to have rained on day 1. 

• Both the forward and backward recursions take a constant amount of time per 

step; hence, the time complexity of smoothing with respect to evidence e1:t is 

O(t). This is the complexity for smoothing at a particular time step k. If we 

want to smooth the whole sequence, one obvious method is simply to run the 

whole smoothing process once for each time step to be smoothed. This results 

in a time complexity of O(t2). 

Smoothing
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• A better approach uses dynamic programming to reduce the complexity to O(t). 

• The key to the linear-time algorithm is to record the results of forward filtering 

over the whole sequence. Then we run the backward recursion from t down to 

1, computing the smoothed estimate at each step k from the computed back-

ward message bk+1:t and the stored forward message f1:k. The algorithm alled

the forward–backward algorithm is shown in Figure 15.4.

Smoothing
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Smoothing

36



• Suppose that [true, true, false, true, true] is the umbrella sequence for the 

security guard’s first five days on the job. 

• In all, there are 25 possible weather sequences we could pick. Is there a way to 

find the most likely one, short of enumerating all of them?

• We could try this linear-time procedure: use smoothing to find the posterior 

distribution for the weather at each time step; then construct the sequence, 

using at each step the weather that is most likely according to the posterior. 

Finding the most likely sequence
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• View each sequence as a path through a graph whose nodes are the possible 

states at each time step. Such a graph is shown for the umbrella world in 

Figure 15.5(a). 

• Consider the task of finding the most likely path through this graph, where the 

likelihood of any path is the product of the transition probabilities along the 

path and the probabilities of the given observations at each state. 

Finding the most likely sequence
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Finding the most likely sequence
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• Let’s focus on paths that reach the state Rain5 =true. Because of the Markov 

property, the most likely path to the state Rain5 =true consists of the most 

likely path to some state at time 4 followed by a transition to Rain5 =true; and 

the state at time 4 that will become part of the path to Rain5 =true is whichever 

maximizes the likelihood of that path. In other words, there is a recursive 

relationship between most likely paths to each state xt+1 and most likely paths 

to each state xt.

Finding the most likely sequence
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• Equation (15.11) is identical to the filtering equation (15.5) except that 

Finding the most likely sequence
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• Thus, the algorithm for computing the most likely sequence is similar to 

filtering: it runs forward along the sequence, computing the m message at each 

time step, using Equation (15.11). The progress of this computation is shown 

in Figure 15.5(b). At the end, it will have the probability for the most likely 

sequence reaching each of the final states. One can thus easily select the most 

likely sequence overall (the states outlined in bold). 

• The optimal sequence is identified by following these bold arrows backwards 

from the best final state.

Finding the most likely sequence
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• The algorithm we have just described is called the Viterbi algorithm. Like the 

filtering algorithm, its time complexity is linear in t, the length of the sequence. 

Unlike filtering, which uses constant space, its space requirement is also linear 

in t. This is because the Viterbi algorithm needs to keep the pointers that 

identify the best sequence leading to each state.

Finding the most likely sequence
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• An HMM is a temporal probabilistic model in which the state of the process is 

described by a single discrete random variable. The possible values of the 

variable are the possible states of the world. 

• The umbrella example described in the preceding section is therefore an HMM, 

since it has just one state variable: Raint. What happens if you have a model 

with two or more state variables? You can still fit it into the HMM framework 

by combining the variables into a single “megavariable” whose values are all 

possible tuples of values of the individual state variables. 

Hidden Markov Models
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• Here we make the vacuum problem slightly more realistic by including a 

simple probability model for the robot’s motion and by allowing for noise in 

the sensors. The state variable Xt represents the location of the robot on the 

discrete grid; the domain of this variable is the set of empty squares {s1, . . . , 

sn}. Let NEIGHBORS(s) be the set of empty squares that are adjacent to s and 

let N(s) be the size of that set. Then the transition model for Move action says 

that the robot is equally likely to end up at any neighboring square:

HMM example: Localization
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• We don’t know where the robot starts, so we will assume a uniform 

distribution over all the squares; that is, P(X0 = i) = 1/n. For the particular 

environment we consider (Figure 15.7), n = 42 and the transition matrix T has 

42 × 42 = 1764 entries.

HMM example: Localization
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HMM example: Localization
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• The sensor variable Et has 16 possible values, each a four-bit sequence giving 

the presence or absence of an obstacle in a particular compass direction. We 

will use the notation NS, for example, to mean that the north and south sensors 

report an obstacle and the east and west do not. Suppose that each sensor’s 

error rate is ε and that errors occur independently for the four sensor directions. 

In that case, the probability of getting all four bits right is (1 − ε)4 and the 

probability of getting them all wrong is ε4 . Furthermore, if dit is the 

discrepancy—the number of bits that are different—between the true values 

for square i and the actual reading et, then the probability that a robot in square 

i would receive a sensor reading et is

HMM example: Localization
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• For example, the probability that a square with obstacles to the north and south 

would produce a sensor reading NSE is (1−ε)3ε1. 

• Given the matrices T and Ot, the robot can compute the posterior distribution 

over locations to work out where it is. 

• Figure 15.7 shows the distributions P(X1 |E1 =NSW) and P(X2 |E1 =NSW, E2

=NS). 

HMM example: Localization

63



• In addition to filtering to estimate its current location, the robot can use 

smoothing to work out where it was at any given past time and it can use the 

Viterbi algorithm to work out the most likely path it has taken to get where it is 

now. 

• Figure 15.8 shows the localization error and Viterbi path accuracy for various 

values of the per-bit sensor error rate ε. Even when ε is 20%—which means 

that the overall sensor reading is wrong 59% of the time—the robot is usually 

able to work out its location within two squares after 25 observations. 

HMM example: Localization
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HMM example: Localization
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• This is because of the algorithm’s ability to integrate evidence over time and to 

take into account the probabilistic constraints imposed on the location 

sequence by the transition model. When ε is 10%, the performance after a half-

dozen observations is hard to distinguish from the performance with perfect 

sensing. 

• Broadly speaking, high levels of localization and path accuracy are maintained 

even in the face of substantial errors in the models used.

HMM example: Localization
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• Imagine watching a small bird flying through dense jungle foliage at dusk: you 

glimpse brief, intermittent flashes of motion; you try hard to guess where the 

bird is and where it will appear next so that you don’t lose it. Or imagine that 

you are a World War II radar operator peering at a faint, wandering blip that 

appears once every 10 seconds on the screen. 

• In all these cases, you are doing filtering: estimating state variables (here, 

position and velocity) from noisy observations over time. If the variables were 

discrete, we could model the system with a hidden Markov model. This 

section examines methods for handling continuous variables, using an 

algorithm called Kalman filtering.

Kalman Filters
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• The bird’s flight might be specified by six continuous variables at each time 

point; three for position (Xt, Yt, Zt) and three for velocity (Xt, Yt, Zt). We will 

need suitable conditional densities to represent the transition and sensor 

models: linear Gaussian distributions. The next state Xt+1 must be a linear 

function of the current state Xt, plus some Gaussian noise. Consider the X-

coordinate of the bird. Let the time interval between observations be Δ, and 

assume constant velocity during the interval; then the position update is given 

by Xt+Δ = Xt +XtΔ. Adding Gaussian noise, we obtain a linear Gaussian 

transition model:

Kalman Filters
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• The Bayesian network structure for a system with position vector Xt and 

velocity Xt is shown in Figure 15.9. 

• A multivariate Gaussian distribution for d variables is specified by a d-element 

mean μ and a d × d covariance matrix Σ.

Kalman Filters
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• A key property of the linear Gaussian family of distributions: it remains closed 

under the standard Bayesian network operations. 

Updating Gaussian distributions
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• Thus, the FORWARD operator for Kalman filtering takes a Gaussian forward 

message f1:t, specified by a mean μt and covariance matrix Σt, and produces a 

new multivariate Gaussian forward message f1:t+1, specified by a mean μt+1 and 

covariance matrix Σt+1. 

• So, if we start with a Gaussian prior f1:0 = P(X0) = N(μ0, Σ0), filtering with a 

linear Gaussian model produces a Gaussian state distribution for all time. 

Updating Gaussian distributions
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• The temporal model we consider describes a random walk of a single 

continuous state variable Xt with a noisy observation Zt. 

• An example might be the “consumer confidence” index, which can be 

modeled as undergoing a random Gaussian-distributed change each month and 

is measured by a random consumer survey that also introduces Gaussian 

sampling noise.

A simple one-dimensional example
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A simple one-dimensional example
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A simple one-dimensional example
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A simple one-dimensional example
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(15.19)

• To complete the update step, we need to condition on the observation at the 

first time step, namely, z1. From Equation (15.18), this is given by

• Once again, we combine the exponents and complete the square, obtaining

Thus, after one update cycle, we have a new Gaussian distribution for the state 

variable.



• From the Gaussian formula in Equation (15.19), we see that the new mean and 

standard deviation can be calculated from the old mean and standard deviation 

as follows:

• Figure 15.10 shows one update cycle for particular values of the transition and 

sensor models.

A simple one-dimensional example
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A simple one-dimensional example
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• Equation (15.20) has some interesting additional properties. 

• First, we can interpret the calculation for the new mean μt+1 as simply a 

weighted mean of the new observation zt+1 and the old mean μt. If the 

observation is unreliable, then σz
2 is large and we pay more attention to the old 

mean; if the old mean is unreliable (σt
2 is large) or the process is highly 

unpredictable (σx
2 is large), then we pay more attention to the observation. 

A simple one-dimensional example
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• Second, notice that the update for the variance σt+1
2 is independent of the 

observation. We can therefore compute in advance what the sequence of 

variance values will be. 

• Third, the sequence of variance values converges quickly to a fixed value that 

depends only on σx
2 and σz

2, thereby substantially simplifying the subsequent 

calculations. 

A simple one-dimensional example
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• The preceding derivation illustrates the key property of Gaussian distributions 

that allows Kalman filtering to work: the fact that the exponent is a quadratic 

form. This is true not just for the univariate case; the full multivariate Gaussian 

distribution has the form

• Multiplying out the terms in the exponent makes it clear that the exponent is 

also a quadratic function of the values xi in x. As in the univariate case, the 

filtering update preserves the Gaussian nature of the state distribution.

The general case
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• Let us first define the general temporal model used with Kalman filtering. 

Both the transition model and the sensor model allow for a linear 

transformation with additive Gaussian noise. Thus, we have

• where F and Σx are matrices describing the linear transition model and 

transition noise covariance, and H and Σz are the corresponding matrices for 

the sensor model.  

The general case
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The general case

82

• Now the update equations for the mean and covariance are

where

is called the Kalman gain matrix.  

• Consider the update for the mean state estimate μ. The term Fμt is the 

predicted state at t+1, so HFμt is the predicted observation. Therefore, the 

term zt+1 − HFμt represents the error in the predicted observation. This is 

multiplied by Kt+1 to correct the predicted state; hence, Kt+1 is a measure of 

how seriously to take the new observation relative to the prediction. 



• To illustrate these equations at work, we have applied them to the problem of 

tracking an object moving on the X–Y plane. The state variables are X = (X, Y, 

X, Y)T , so F, Σx, H, and Σz are 4×4 matrices. 

• Figure 15.11(a) shows the true trajectory, a series of noisy observations, and 

the trajectory estimated by Kalman filtering, along with the covariances 

indicated by the one-standard-deviation contours. The filtering process does a 

good job of tracking the actual motion, and, as expected, the variance quickly 

reaches a fixed point.

The general case
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The general case
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• We can also derive equations for smoothing as well as filtering with linear 

Gaussian models. The smoothing results are shown in Figure 15.11(b). Notice 

how the variance in the position estimate is sharply reduced, except at the 

ends of the trajectory, and that the estimated trajectory is much smoother.

The general case
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• The “classical” application is in radar tracking of aircraft and missiles. 

Related applications include acoustic tracking of submarines and ground 

vehicles and visual tracking of vehicles and people. 

• The range of application is much larger than just the tracking of motion: any 

system characterized by continuous state variables and noisy measurements 

will do. Such systems include pulp mills, chemical plants, nuclear reactors, 

plant ecosystems, and national economies.

Applicability of Kalman filtering
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• In this section, we see what happens when two or more objects generate the 

observations. What makes this case different from plain old state estimation is 

that there is now the possibility of uncertainty about which object generated 

which observation. 

• In the control theory literature, this is the data association problem—that is, 

the problem of associating observation data with the objects that generated 

them.

Keeping Track of Many Objects
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• The data association problem was studied originally in the context of radar 

tracking, where reflected pulses are detected at fixed time intervals by a 

rotating radar antenna. At each time step, multiple blips may appear on the 

screen, but there is no direct observation of which blips at time t belong to 

which blips at time t − 1. 

• Figure 15.19(a) shows a simple example with two blips per time step for five 

steps. Let the two blip locations at time t be et
1 and et

2. Let us assume, for the 

time being, that exactly two aircraft, A and B, generated the blips; their true 

positions are Xt
A and Xt

B. Just to keep things simple, we’ll also assume that the 

each aircraft moves independently according to a known transition model.

Keeping Track of Many Objects
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Keeping Track of Many Objects
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• Suppose we try to write down the overall probability model for this scenario, 

just as we did for general temporal processes in Equation (15.3). As usual, the 

joint distribution factors into contributions for each time step as follows:

Keeping Track of Many Objects
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(15.24)



• We would like to factor the observation term                              into a product 

of two terms, one for each object, but this would require knowing which 

observation was generated by which object. Instead, we have to sum over all 

possible ways of associating the observations with the objects. 

• Some of those ways are shown in Figure 15.19(b–c); in general, for n objects 

and T time steps, there are (n!)T ways of doing it—an awfully large number.

Keeping Track of Many Objects
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• We’ll write ωt to denote the one-to-one mapping from objects to observations 

at time t, with ωt(A) and ωt(B) denoting the specific observations (1 or 2) that 

ωt assigns to A and B. (For n objects, ωt will have n! possible values; here, 

n!=2.) 

• Because the labels “1” and “2” on the observations are assigned arbitrarily, 

the prior on ωt is uniform and ωt is independent of the states of the objects, xt
A

and xt
B. 

Keeping Track of Many Objects
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Keeping Track of Many Objects
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Plugging this into Equation (15.24), we get an expression that is only in terms of 

transition and sensor models for individual objects and observations.

So we can condition the observation term                             on ωt and then simplify:



• As for all probability models, inference means summing out the variables 

other than the query and the evidence. For filtering in HMMs and DBNs, we 

were able to sum out the state variables from 1 to t − 1 by a simple dynamic 

programming trick; for Kalman filters, we took advantage of special 

properties of Gaussians. 

• For data association, we are less fortunate. There is no (known) efficient exact 

algorithm, for the same reason that there is none for the switching Kalman 

filter.

Keeping Track of Many Objects
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• As a result of the complexity of exact inference, many different approximate 

methods have been used. The simplest approach is to choose a single “best” 

assignment at each time step, given the predicted positions of the objects at 

the current time step. This assignment associates observations with objects 

and enables the track of each object to be updated and a prediction made for 

the next time step. 

• For choosing the “best” assignment, it is common to use the so-called 

nearest-neighbor filter, which repeatedly chooses the closest pairing of 

predicted position and observation and adds that pairing to the assignment. 

Keeping Track of Many Objects
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• The nearest-neighbor filter works well when the objects are well separated in 

state space and the prediction uncertainty and observation error are small. 

• When there is more uncertainty as to the correct assignment, a better approach 

is to choose the assignment that maximizes the joint probability of the current 

observations given the predicted positions. This can be done very efficiently 

using the Hungarian algorithm, even though there are n! assignments to 

choose from.

Keeping Track of Many Objects

136



• Any method that commits to a single best assignment at each time step fails 

miserably under more difficult conditions. In particular, if the algorithm 

commits to an incorrect assignment, the prediction at the next time step may 

be significantly wrong, leading to more incorrect assignments, and so on. 

• Two modern approaches turn out to be much more effective. A particle 

filtering algorithm for data association works by maintaining a large 

collection of possible current assignments. 

Keeping Track of Many Objects
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• An MCMC algorithm explores the space of assignment histories—for 

example, Figure 15.19(b–c) might be states in the MCMC state space—and 

can change its mind about previous assignment decisions. Current MCMC 

data association methods can handle many hundreds of objects in real time 

while giving a good approximation to the true posterior distributions.
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