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Time and Uncertainty

* We have mentioned probabilistic reasoning in the context of static worlds.

« Now consider a slightly different problem: treating a diabetic (i KJ%) patient.
We have evidence such as recent insulin doses (fR EZ %I =), food intake (17
HY), blood sugar measurements, and other physical signs. The task is to assess
the current state of the patient, including the actual blood sugar level and
msulin level. Given this information, we can make a decision about the

patient’s food intake and insulin dose.

* Blood sugar levels and measurements thereof can change rapidly over time.

We must model these changes.
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States and observations

* We view the world as a series of snapshots, or time slices, each of which
contains a set of random variables, some observable and some not.

* We assume some subset of variables 1s observable in each time slice. We will
use X, to denote the set of state variables at time ¢, which are assumed to be
unobservable, and E, to denote the set of observable evidence variables. The

observation at time ¢ is E, = e, for some set of values e,.
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States and observations

* You are the security guard stationed at a secret underground installation. You
want to know whether it’s raining today, but your only access to the outside

world occurs each morning when you see the director coming in with, or

without, an umbrella.

* For each day ¢, the set E, thus contains a single evidence variable Umbrella, or

U, for short, and the set X, contains a single state variable Rain, or R, for short.
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States and observations

* The interval between time slices also depends on the problem. For diabetes
monitoring, a suitable interval might be an hour rather than a day. In this
chapter we assume the interval between slices is fixed, so we can label times
by integers.

* Our umbrella world 1s represented by state variables R, R, R,, ... and
evidence variables U,, U,, ... We will use the notation a:b to denote the
sequence of integers from a to b (inclusive), and the notation X ., to denote the

set of variables from X, to X,.
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Transition and sensor models

» The transition model specifies the probability distribution over the latest state
variables, given the previous values, that is, P(X, | X;.,-).

* Now we face a problem: the set X,,,,_; 1s unbounded 1n size as ¢ increases. We
solve the problem by making a Markov assumption— that the current state
depends on only a finite fixed number of previous states.

* The simplest case: the first-order Markov process, in which the current state

depends only on the previous state and not on any earlier states.
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Transition and sensor models

* With first-order Markov assumption, we have
P(X; | Xo:t-1) = P(X; | X¢—1)

* Hence, in a first-order Markov process, the transition model is the conditional
distribution P(X, | X,_). The transition model for a second-order Markov
process 1s the conditional distribution P(X, | X,_,, X,_).

* Figure 15.1 shows the Bayesian network structures corresponding to first-

order and second-order Markov processes.
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Transition and sensor models
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Figure 15.1 (a) Bayesian network structure corresponding to a first-order Markov process
with state defined by the variables X;. (b) A second-order Markov process.
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Transition and sensor models

* Even with the Markov assumption there is still a problem: there are infinitely
many possible values of z. Do we need to specify a different distribution for
each time step?

* We avoid this problem by assuming that changes in the world state are caused
by a stationary process—that is, a process of change that is governed by laws
that do not themselves change over time. (Don’t confuse stationary with static:
in a static process, the state itself does not change.)

* In the umbrella world, then, the conditional probability of rain, P(R, | R,_)), 1S
the same for all ¢, and we only have to specify one conditional probability

table.
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Transition and sensor models

* The sensor model: The evidence variables E, could depend on previous
variables as well as the current state variables. But, we make a sensor Markov
assumption as follows:

P(E; | Xo:t,Eo.t—1) = P(E¢ | X¢)
Thus, P(E, | X)) i1s our sensor model (sometimes called the observation
model).

* Figure 15.2 shows both the transition model and the sensor model for the

umbrella example.
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Transition and sensor models
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Figure 15.2 Bayesian network structure and conditional distributions describing the
umbrella world. The transition model is P(Rain;| Rain:—1) and the sensor model is
P(Umbrella; | Raing).
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Transition and sensor models

* Further, we need to say how everything gets started—the prior probability
distribution at time 0, P(X,). With that, we have a specification of the
complete joint distribution over all the variables, using Equation (14.2). For

any 1,

P(Xo.,E14) = P(Xo) Il P(X; | X;_1) P(E; | X) (15.3)
i=1

The three terms on the right-hand side are the initial state model P(X,), the
transition model P(X; | X,_,), and the sensor model P(E, | X)).
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Transition and sensor models

 First-order Markov process—the probability of rain is assumed to depend only
on whether it rained the previous day. Whether such an assumption is
reasonable depends on the domain itself. Sometimes the assumption is exactly

true.

Figure 15.2 Bayesian network structure and conditional distributions describing the
umbrella world. The transition model is P(Rain: | Rain:—1) and the sensor model is
P(Umbrella: | Raing).




Transition and sensor models

* Sometimes the assumption is only approximate. There are two ways to
improve the accuracy of the approximation:
* Increasing the order of the Markov process model. For example, we could
make a second-order model by adding Rain, , as a parent of Rain,.
* Increasing the set of state variables. For example, we could add Season, to
allow us to incorporate historical records of rainy seasons, or we could
add Temperature,, Humidity, and Pressure, to allow us to use a physical

model of rainy conditions.
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Inference in Temporal Models

* We can formulate the basic inference tasks that must be solved:
 Filtering: This is the task of computing the belief state—the posterior
distribution over the most recent state—given all evidence to date.
Filtering is also called state estimation. In our example, we wish to
compute P(X, | e;.,). In the umbrella example, this would mean computing
the probability of rain today, given all the observations of the umbrella

carrier made so far.
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Inference in Temporal Models

* We can formulate the basic inference tasks that must be solved:
* Prediction: This is the task of computing the posterior distribution over
the future state, given all evidence to date. That 1s, we wish to compute
P(X,,; | e;.,) for some k> 0. In the umbrella example, this might mean
computing the probability of rain three days from now, given all the

observations to date.
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Inference in Temporal Models

* We can formulate the basic inference tasks that must be solved:

* Smoothing: This is the task of computing the posterior distribution over a
past state, given all evidence up to the present. That 1s, we wish to
compute P(X, | e,.,) for some k& such that 0 <k <¢. In the umbrella
example, it might mean computing the probability that it rained last
Wednesday, given all the observations of the umbrella carrier made up to
today. Smoothing provides a better estimate of the state than was available

at the time, because it incorporates more evidence.
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Inference in Temporal Models

* We can formulate the basic inference tasks that must be solved:

* Most likely explanation: Given a sequence of observations, we might
wish to find the sequence of states that 1s most likely to have generated
those observations. That 1s, we wish to compute argmax .., P(X;., | €;.,).
For example, 1f the umbrella appears on each of the first three days and 1s
absent on the fourth, then the most likely explanation is that it rained on
the first three days and did not rain on the fourth. Algorithms for this task
are useful in many applications, including speech recognition—where the

aim 1s to find the most likely sequence of words, given a series of sounds.
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Inference in Temporal Models

* In addition to these inference tasks, we also have
* Learning: The transition and sensor models can be learned from
observations.
The overall process is an instance of the expectation-maximization

or EM algorithm.
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Filtering and prediction

* A useful filtering algorithm needs to maintain a current state estimate and
update it, rather than going back over the entire history of percepts for each
update.

* In other words, given the result of filtering up to time #, the agent needs to
compute the result for # + 1 from the new evidence e,, |,

P(Xii1]entr1) = fe1, P(X; | e1))

for some function f.
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Filtering and prediction

* This process is called recursive estimation. We can view the calculation as
being composed of two parts: first, the current state distribution 1s projected
forward from ¢ to #+1; then it is updated using the new evidence e,, . This two-
part process emerges quite simply when the formula 1s rearranged:

P(X;y1|e1sr1) = P(X¢t1]|€1:4,€41) (dividing up the evidence)

Q‘!P(et_|_1 | Xt_|_1, elzt) P(Xt-+—1 | e1;t) (llSiIlg Bayes’ rule)
= aP(eir1|Xr1) P(X¢r1|€1.¢) (by the sensor Markov assumption). (15.4)
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Filtering and prediction

* a1s a normalizing constant used to make probabilities sum up to 1. The second
term, P(X,,, | e,.,,) represents a one-step prediction of the next state, and
P(e,., | X,;)) 1s obtainable directly from the sensor model. Now we obtain the

one-step prediction for the next state by conditioning on the current state X,:

P(Xt+1 | 31:t+1) = OéP(et+1 |Xt+1) Y P(Xt+1 |Xt, el:t)P(Xt | el:t)

Xt

= aP(e; |Xt+1)v P(Xy11 |x:)P(x:|€1.t) (Markov assumption). (15.5)

Xt
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Filtering and prediction

« Within the summation, the first factor comes from the transition model and the
second comes from the current state distribution. Hence, we have the desired
recursive formulation. We can think of the filtered estimate P(X, | e;,,) as a
“message” f., that 1s propagated forward along the sequence, modified by each
transition and updated by each new observation. The process is given by

f1.4+1 = « FORWARD(f1.;,€441)
where FORWARD implements the update described in Equation (15.5) and the
process begins with f,., = P(X,).

P(Xt+1 | 31:t+1) = aP(etH |Xt+1) Y P(Xt—l—l |Xt,elzt)P(Xt | el:t)

Xt

= aP(er1|Xir1) Y P(X;t1|x¢)P(x;|€1.t) (Markov assumption). (15.5)

Xt




Filtering and prediction

Let us illustrate the filtering process for two steps in the basic umbrella example (Fig-
ure 15.2.) That is, we will compute P(R5 | u1.2) as follows:

e On day 0, we have no observations, only the security guard’s prior beliefs; let’s assume
that consists of P(Rp) = (0.5,0.5).
e On day 1, the umbrella appears, so Uy = true. The prediction from t=0tot=11s
P(R1) = Y P(Ry|ro)P(ro)
T0
= (0.7,0.3) x 0.5 + (0.3,0.7) x 0.5 = (0.5,0.5) .
Then the update step simply multiplies by the probability of the evidence for ¢ =1 and
normalizes, as shown in Equation (15.4):

P(Ri|u1) = aP(u; | R1)P(R1) = «(0.9,0.2)(0.5,0.5)
= «(0.45,0.1) ~ (0.818,0.182) .
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t 07
f| 03

R, | P(Up
t 09
i 0.2

Qe Az Kot Co> ety Gt

National Cheng Kung University Figure 15.2 Bayesian network structure and conditional distribut; escribing the
umbrella world. Th transition model is P(Rai |R —1) a dh ensor model is
P(Umbrella; | Rain.




Filtering and prediction

e On day 2, the umbrella appears, so Uy = true. The prediction from t=1tot=21s
P(Rz|w) = > P(Rz|r1)P(r1|u)

1

= (0.7,0.3) x 0.818 + (0.3,0.7) x 0.182 ~ (0.627,0.373) ,
and updating it with the evidence for { =2 gives
P(R2|u1,u2) = aP(us|Ry)P(R2|u1) = «(0.9,0.2)(0.627,0.373)
= «(0.565,0.075) =~ (0.883,0.117) .

Intuitively, the probability of rain increases from day 1 to day 2 because rain persists.
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Filtering and prediction

» The task of prediction can be seen simply as filtering without the addition of
new evidence. In fact, the filtering process already incorporates a one-step
prediction, and it 1s easy to derive the following recursive computation for

predicting the state at # + k£ + 1 from a prediction for ¢ + £:

P(Xiikt1]ers) = Y PXepkr1 | Xerk) P(Xetk | €1:4)

X4k

Naturally, this computation involves only the transition model and not the

sensor model.
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Smoothing

* Smoothing is the process of computing the distribution over past states given
evidence up to the present; that 1s, P(X, | e,.,) for 0 <k <t (See Figure 15.3.)
In anticipation of another recursive message-passing approach, we can split
the computation into two parts—the evidence up to k£ and the evidence from
k+1tot,

P(Xy |e1.:) = P(Xk|e1.k,€xy1:t)
aP(Xj | e1.x)P(ert1:¢ | Xk, €1:) (using Bayes’ rule)

aP(Xy |e.r)P(exi1. | Xk) (using conditional independence)
= ofi.p X brir . (15.3)

where “X” represents pointwise multiplication of vectors.
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Smoothing
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Figure 15.3  Smoothing computes P(Xy | e;.;), the posterior distribution of the state at
some past time k given a complete sequence of observations from 1 to ¢.
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Smoothing

* Here we have defined a “backward” message b, ., = P(e..., | X, ), analogous
to the forward message f,.,. The forward message f,., can be computed by
filtering forward from 1 to £. It turns out that the backward message b, ., can

be computed by a recursive process that runs backward from #:

Plert1.: | Xk) = by P(ex+1:t | Xk, Xg+1)P(Xk+1| Xg) (conditioning on X 1)

Xk+1

= Y P(egi1:¢|Xp11)P(Xks1 | Xx)  (by conditional independence)

Xke+1

= Y P(ek+1,ek+2zt|Xk+1)P(Xk:+1|Xk:)
Xk+1

= Y P(ers1|Xkr1)Plerros | Xkr1)P(Xrr1 | Xk) (15.9)

Xkp+1




Smoothing

* The last step follows by the conditional independence of e, ; and e,,,.,, given
X+ Of the three factors in this summation, the first and third are obtained
directly from the model, and the second is the “recursive call.” Using the
message notation, we have

bgi1: = BACKWARD(I)}C_}_Q;t, E}H_l)

where BACKWARD implements the update described in Equation (15.9).
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Smoothing

* We can now see that the two terms in Equation (15.8) can both be computed
by recursions through time, one running forward from 1 to £ and using the
filtering equation (15.5) and the other running backward from 7 to £+ 1 and
using Equation (15.9).

* The backward phase i1s initialized with b, ., = P(e,, ., | X)) =P( | X))1, where 1
1s a vector of Is. (Because e, ., 1s an empty sequence, the probability of
observing it is 1.)

P(Xy |e1t) = P(Xk|e1.x,€kr1:t)
= P(Xk | el:k‘)P(ek-I—l:t | Xk, el:k) (llSillg Bayes’ rule)

aP(Xj |e.r)P(exy1.+ | Xk) (using conditional independence)
= afpp Xbgyre. (15.8)
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Smoothing

Let us now apply this algorithm to the umbrella example, computing the smoothed
estimate for the probability of rain at time £ =1, given the umbrella observations on days 1
and 2. From Equation (15.8), this is given by

P(R; |uy,ug) = aP(Ry|u1)P(ug | Ry) - (15.10)

The first term we already know to be (.818,.182), from the forward filtering process de-

scribed earlier. The second term can be computed by applying the backward recursion in
Equation (15.9):

P(uz|R1) = Y P(us|ra)P( |r2)P(ra| Ry)

r2

= (0.9 x1x(0.7,0.3)) + (0.2 x 1 x (0.3,0.7)) = (0.69,0.41) .
Plugging this into Equation (15.10), we find that the smoothed estimate for rain on day 1 is
P(Ry | u1,u2) = «(0.818,0.182) x (0.69,0.41) ~ (0.883,0.117) .
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Smoothing

* Thus, the smoothed estimate for rain on day 1 is higher than the filtered
estimate (0.818) in this case. This 1s because the umbrella on day 2 makes it
more likely to have rained on day 2; in turn, because rain tends to persist, that
makes 1t more likely to have rained on day 1.

* Both the forward and backward recursions take a constant amount of time per
step; hence, the time complexity of smoothing with respect to evidence e, 1s
O(¢). This is the complexity for smoothing at a particular time step £. If we
want to smooth the whole sequence, one obvious method 1s simply to run the
whole smoothing process once for each time step to be smoothed. This results

in a time complexity of O(£%).
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Smoothing

* A better approach uses dynamic programming to reduce the complexity to O(¢).

* The key to the linear-time algorithm is to record the results of forward filtering
over the whole sequence. Then we run the backward recursion from ¢ down to
1, computing the smoothed estimate at each step & from the computed back-
ward message b, ., and the stored forward message f,.;. The algorithm alled

the forward—-backward algorithm is shown in Figure 15.4.
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Smoothing

function FORWARD-BACKWARD(ev, prior) returns a vector of probability distributions

inputs: ev, a vector of evidence values for steps 1,...,¢
prior, the prior distribution on the initial state, P(X()
local variables: fv, a vector of forward messages for steps O, . . ., ¢
b, a representation of the backward message, initially all 1s
sv, a vector of smoothed estimates for steps 1,...,1¢

fv[0] < prior
fori:= 1totdo
fv[i| < FORWARD(fv[i — 1], ev][i])
for : = ¢ downto 1 do
sv[i| «+ NORMALIZE(fv[i] X b)
b < BACKWARD(b, ev[z])
return sv

Figure 15.4  The forward-backward algorithm for smoothing: computing posterior prob-
abilities of a sequence of states given a sequence of observations. The FORWARD and
BACKWARD operators are defined by Equations (15.5) and (15.9), respectively.




Finding the most likely sequence

* Suppose that [true, true, false, true, true] is the umbrella sequence for the
security guard’s first five days on the job.
* In all, there are 2° possible weather sequences we could pick. Is there a way to

find the most likely one, short of enumerating all of them?

* We could try this linear-time procedure: use smoothing to find the posterior
distribution for the weather at each time step; then construct the sequence,

using at each step the weather that is most likely according to the posterior.
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Finding the most likely sequence

* View each sequence as a path through a graph whose nodes are the possible
states at each time step. Such a graph is shown for the umbrella world in
Figure 15.5(a).

* Consider the task of finding the most likely path through this graph, where the
likelihood of any path 1s the product of the transition probabilities along the

path and the probabilities of the given observations at each state.
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Finding the most likely sequence

Rain Rain, Rain, Rain, Rain s
true true true true true
o X Rt
Jfalse Jalse false false false
Umbrella; true true false true true
8182 S155 0361
(b)
1818 0491
m, m, ., m, m, ., m, s
Figure 15.5 (a) Possible state sequences for Rain; can be viewed as paths through a graph

of the possible states at each time step. (States are shown as rectangles to avoid confusion
with nodes in a Bayes net.) (b) Operation of the Viterbi algorithm for the umbrella obser-
vation sequence [true, true, false, true, true]. For each ¢, we have shown the values of the
message m;.;, which gives the probability of the best sequence reaching each state at time t.
Also, for each state, the bold arrow leading into it indicates its best predecessor as measured
by the product of the preceding sequence probability and the transition probability. Following
the bold arrows back from the most likely state in m;.5 gives the most likely sequence.




Finding the most likely sequence

* Let’s focus on paths that reach the state Rains =true. Because of the Markov
property, the most likely path to the state Rains =true consists of the most
likely path to some state at time 4 followed by a transition to Rains =true; and
the state at time 4 that will become part of the path to Rains =true is whichever
maximizes the likelihood of that path. In other words, there 1s a recursive
relationship between most likely paths to each state x,,.; and most likely paths

to each state x..

max P(Xl, ey X¢, Xt_|_1 | e1;t+1)
X1...X¢

— aP(et_H |Xt_|_1) max /P(Xt—l—l |Xt) Xlﬂl%t}{l P(Xl, s X¢t—1, X¢ | el;t)\ . (1511)

P(Xt+1 | el:t+1) = OéP(et+1 |Xt+1) Y P(Xt-l-l |Xt7 el:t)P(Xt | el:t)

= aP(ey; |xt+1)Y P(X:11 | xt)P(x: |€1:) (Markov assumption). (15.5)
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Finding the most likely sequence

* Equation (15.11) is identical to the filtering equation (15.5) except that

1. The forward message f1., =P(X; | e1.;) is replaced by the message

m;.; = max P(Xl, cooy X1, Xt |e1;t) 3
X1...Xt—1

that is, the probabilities of the most likely path to each state x;; and

2. the summation over x; in Equation (15.5) is replaced by the maximization over X; in
Equation (15.11).
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Finding the most likely sequence

* Thus, the algorithm for computing the most likely sequence is similar to
filtering: it runs forward along the sequence, computing the m message at each
time step, using Equation (15.11). The progress of this computation is shown
in Figure 15.5(b). At the end, it will have the probability for the most likely
sequence reaching each of the final states. One can thus easily select the most
likely sequence overall (the states outlined in bold).

* The optimal sequence 1s identified by following these bold arrows backwards

from the best final state.
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Finding the most likely sequence

* The algorithm we have just described 1s called the Viterbi algorithm. Like the
filtering algorithm, its time complexity is linear in ¢, the length of the sequence.
Unlike filtering, which uses constant space, its space requirement is also linear
in ¢. This 1s because the Viterbi algorithm needs to keep the pointers that

identify the best sequence leading to each state.
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Hidden Markov Models

 An HMM is a temporal probabilistic model in which the state of the process is
described by a single discrete random variable. The possible values of the
variable are the possible states of the world.

* The umbrella example described in the preceding section is therefore an HMM,
since 1t has just one state variable: Rain,. What happens if you have a model
with two or more state variables? You can still fit it into the HMM framework
by combining the variables into a single “megavariable” whose values are all

possible tuples of values of the individual state variables.
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HMM example: Localization

* Here we make the vacuum problem slightly more realistic by including a
simple probability model for the robot’s motion and by allowing for noise in
the sensors. The state variable X, represents the location of the robot on the
discrete grid; the domain of this variable 1s the set of empty squares {s, . . .,
s,+. Let NEIGHBORS(s) be the set of empty squares that are adjacent to s and
let N(s) be the size of that set. Then the transition model for Move action says

that the robot i1s equally likely to end up at any neighboring square:
P(Xip1=37|X¢=1) =T;; = (1/N(3) if j € NEIGHBORS(%) else 0)
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HMM example: Localization

 We don’t know where the robot starts, so we will assume a uniform
distribution over all the squares; that is, P(X,, = i) = 1/n. For the particular

environment we consider (Figure 15.7), n =42 and the transition matrix T has

42 x 42 = 1764 entries.
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HMM example: Localization

(b) Posterior distribution over robot location after E1 = NSW,E>= NS

Figure 15.7  Posterior distribution over robot location: (a) one observation £y = NSW;
(b) after a second observation E» = N S. The size of each disk corresponds to the probability

that the robot is at that location. The sensor error rate is € = (0.2.




HMM example: Localization

* The sensor variable £, has 16 possible values, each a four-bit sequence giving
the presence or absence of an obstacle in a particular compass direction. We
will use the notation NS, for example, to mean that the north and south sensors
report an obstacle and the east and west do not. Suppose that each sensor’s
error rate 1s ¢ and that errors occur independently for the four sensor directions.
In that case, the probability of getting all four bits right is (1 —&)* and the
probability of getting them all wrong is &* . Furthermore, if d,, is the
discrepancy—the number of bits that are different—between the true values
for square 7 and the actual reading e,, then the probability that a robot in square

i would receive a sensor reading e, 1s
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HMM example: Localization

* For example, the probability that a square with obstacles to the north and south
would produce a sensor reading NSE is (1—¢)’c!.

* Given the matrices T and O,, the robot can compute the posterior distribution
over locations to work out where it 1s.

* Figure 15.7 shows the distributions P(X, |E;, =NSW) and P(X; |E, =NSW, E,
=NYS).
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HMM example: Localization

* In addition to filtering to estimate its current location, the robot can use
smoothing to work out where it was at any given past time and it can use the
Viterbi algorithm to work out the most likely path it has taken to get where it is
now.

* Figure 15.8 shows the localization error and Viterbi path accuracy for various
values of the per-bit sensor error rate €. Even when ¢ 1s 20%—which means
that the overall sensor reading is wrong 59% of the time—the robot is usually

able to work out its location within two squares after 25 observations.
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HMM example: Localization
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Figure 15.8 Performance of HMM localization as a function of the length of the observa-
tion sequence for various different values of the sensor error probability ¢; data averaged over
400 runs. (a) The localization error, defined as the Manhattan distance from the true location.
(b) The Viterbi path accuracy, defined as the fraction of correct states on the Viterbi path.
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HMM example: Localization

* This is because of the algorithm’s ability to integrate evidence over time and to
take into account the probabilistic constraints imposed on the location
sequence by the transition model. When ¢ 1s 10%, the performance after a half-
dozen observations 1s hard to distinguish from the performance with perfect
sensing.

* Broadly speaking, high levels of localization and path accuracy are maintained

even 1n the face of substantial errors in the models used.
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Kalman Filters

* Imagine watching a small bird flying through dense jungle foliage at dusk: you
glimpse brief, intermittent flashes of motion; you try hard to guess where the
bird 1s and where it will appear next so that you don’t lose it. Or imagine that
you are a World War II radar operator peering at a faint, wandering blip that
appears once every 10 seconds on the screen.

* In all these cases, you are doing filtering: estimating state variables (here,
position and velocity) from noisy observations over time. If the variables were
discrete, we could model the system with a hidden Markov model. This
section examines methods for handling continuous variables, using an

algorithm called Kalman filtering.
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Kalman Filters

* The bird’s flight might be specified by six continuous variables at each time
point; three for position (X,, ¥,, Z,) and three for velocity (X,, ¥,, Z,). We will
need suitable conditional densities to represent the transition and sensor
models: linear Gaussian distributions. The next state X,,; must be a linear
function of the current state X,, plus some Gaussian noise. Consider the X-
coordinate of the bird. Let the time interval between observations be A, and
assume constant velocity during the interval; then the position update is given
by X, o =X, *XA. Adding Gaussian noise, we obtain a linear Gaussian

transition model:

P(XH_A = Tt4+A | Xt =T, Xt = :Bt) = N(ﬂ?t + Sf?t A, 02)($5+A)
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Kalman Filters

* The Bayesian network structure for a system with position vector X, and
velocity X, i1s shown in Figure 15.9.
* A multivariate Gaussian distribution for d variables 1s specified by a d-element

mean u and a d X d covariance matrix X.

>§)
(=)

Figure 15.9  Bayesian network structure for a linear dynamical system with position X;,
velocity X;, and position measurement Z;.
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Updating Gaussian distributions

* A key property of the linear Gaussian family of distributions: it remains closed

under the standard Bayesian network operations.

1. If the current distribution P(X; | e;.;) is Gaussian and the transition model P(X;, 1 | x;)
is linear Gaussian, then the one-step predicted distribution given by

P(Xt_|_1 | elzt) = [ P(Xt—l—l | Xt)P(Xt | el;t) dXt (1517)
Xt
1s also a Gaussian distribution.

2. If the prediction P(X; 1 | e1.¢) is Gaussian and the sensor model P(e; 1 | Xy 1) is linear
Gaussian, then, after conditioning on the new evidence, the updated distribution

P(Xt—l—l |91:t+1) = CVP(et+1 |Xt-|—1)P(Xt—|—1 | el:t) (15.18)

is also a Gaussian distribution.
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Updating Gaussian distributions

* Thus, the FORWARD operator for Kalman filtering takes a Gaussian forward
message f,.,, specified by a mean u, and covariance matrix X, and produces a
new multivariate Gaussian forward message f,.,.,, specified by a mean u,,, and
covariance matrix X ;.

* So, if we start with a Gaussian prior f;., = P(X,) = N(u,, X), filtering with a

linear Gaussian model produces a Gaussian state distribution for all time.
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A simple one-dimensional example

* The temporal model we consider describes a random walk of a single
continuous state variable X, with a noisy observation Z,.

* An example might be the “consumer confidence” index, which can be
modeled as undergoing a random Gaussian-distributed change each month and
1s measured by a random consumer survey that also introduces Gaussian

sampling noise.
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A simple one-dimensional example

The prior distribution is assumed to be Gaussian with variance o3:

_1( @o=p )2>
P(xp) = ae 2( 70 :

(For simplicity, we use the same symbol « for all normalizing constants in this section.) The
transition model adds a Gaussian perturbation of constant variance o2 to the current state:

_;(M)
P(ze1|x) = e s
2

The sensor model assumes Gaussian noise with variance o%:

_%((zt ;t)z)
P(zi|z:) = ae it :

Now, given the prior P(X), the one-step predicted distribution comes from Equation (15.17):

[ [ oH(E) ()
P(z1) = P(z1|z0)P(z0) dzo = o = Je "\ o/ dxg
—00
[oo 1 (68(561%0)2;23(%—#0)2)
= o e ’ 707% dxg .

—00



A simple one-dimensional example

This integral looks rather complicated. The key to progress is to notice that the exponent 1s the
sum of two expressions that are quadratic in x( and hence 1s itself a quadratic in 3:0. A simple
trick known as completing the square allows the rewriting of any quadratic azd + bro + ¢
as the sum of a squared term a(xo — %)2 and a residual term ¢ — ;_ that is independent of
zo. The residual term can be taken outside the integral, giving us

1 b2 oo
P(z1) = oze_i( 4“) [ e~ (a(@0—3;)?%) dxg .
—00
Now the integral is just the integral of a Gaussian over its full range, which is simply 1. Thus,
we are left with only the residual term from the quadratic. Then, we notice that the residual
term is a quadratic in x1; in fact, after simplification, we obtain
1 ( ($12—MQ2)2)
P(z1) = ae *\ °0t7s
That is, the one-step predicted distribution is a Gaussian with the same mean p and a variance
equal to the sum of the original variance ¢ and the transition variance o2.
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A simple one-dimensional example

* To complete the update step, we need to condition on the observation at the

first time step, namely, z,. From Equation (15.18), this is given by
P(z1|z1) = aP(z|x1)P(x1)

_l(w) _l(wdﬁ)
= ae ° o2 e 2\ ogtoz

* Once again, we combine the exponents and complete the square, obtaining

(08+02)21 +o2ug )2
2+Ja:+°'z
(0'0‘|’U:c)5z/(f’0+5m +°'z)

(z1—

(15.19)

B | =

P(z1|z) = ae
Thus, after one update cycle, we have a new Gaussian distribution for the state

variable.
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A simple one-dimensional example

* From the Gaussian formula in Equation (15.19), we see that the new mean and
standard deviation can be calculated from the old mean and standard deviation

as follows:

, _ (of+o5)o;

2, 2 2
(07 + 02)2t41 + 05t 4
op + 0%+ 0%

07+ 02 + o2

Ht+1 = (15.20)

* Figure 15.10 shows one update cycle for particular values of the transition and

sensor models.
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A simple one-dimensional example

045
04 1
035 1
03
0.25 1 P(xy)
0.2 - :
0.15 -
0.1 1 P(x). ]
0.05 1 g

Py 17, =2.5)

P(x)

10

X position

Figure 15.10  Stages in the Kalman filter update cycle for a random walk with a prior
given by po=0.0 and o9 = 1.0, transition noise given by o, = 2.0, sensor noise given by
o0, =1.0, and a first observation z; = 2.5 (marked on the x-axis). Notice how the prediction
P(z) is flattened out, relative to P(z), by the transition noise. Notice also that the mean
of the posterior distribution P(x; | z1) is slightly to the left of the observation z; because the
mean is a weighted average of the prediction and the observation.




A simple one-dimensional example

* Equation (15.20) has some interesting additional properties.

 First, we can interpret the calculation for the new mean y,,; as simply a
weighted mean of the new observation z,,; and the old mean ,. If the
observation is unreliable, then ¢, is large and we pay more attention to the old
mean; if the old mean is unreliable (% is large) or the process is highly

unpredictable (¢,? is large), then we pay more attention to the observation.

» _ (o +o3)o;

2 2 2
(0f + 0%)2e41 + 05 pue d _
an o-t-l-l = D) 9 5

Gt + U:!: + Uz

07+ 02+ 02

Ht+1 =
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A simple one-dimensional example

 Second, notice that the update for the variance o,,? is independent of the
observation. We can therefore compute in advance what the sequence of
variance values will be.

* Third, the sequence of variance values converges quickly to a fixed value that
depends only on 0,2 and 0,2, thereby substantially simplifying the subsequent

calculations.

» _ (o +o3)o;

2 2 2
(0f + 0%)2e41 + 05 pue d _
an O-t_|_1 = ) 9 5

Gt + U:!: + Uz

07+ 02+ 02

Ht+1 =
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The general case

* The preceding derivation illustrates the key property of Gaussian distributions
that allows Kalman filtering to work: the fact that the exponent is a quadratic
form. This is true not just for the univariate case; the full multivariate Gaussian

distribution has the form
N(p, B)(x) = ae 2 (=B x- )

* Multiplying out the terms in the exponent makes it clear that the exponent is
also a quadratic function of the values x; in x. As in the univariate case, the

filtering update preserves the Gaussian nature of the state distribution.
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The general case

* Let us first define the general temporal model used with Kalman filtering.
Both the transition model and the sensor model allow for a linear

transformation with additive Gaussian noise. Thus, we have

P(xe41[x¢) = N(Fxy, Xg)(X¢41)
P(zy |x;) = N(Hx¢, 3;)(z¢) ,
* where F and X, are matrices describing the linear transition model and
transition noise covariance, and H and X are the corresponding matrices for

the sensor model.
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The general case

* Now the update equations for the mean and covariance are

pPir1 = Fpy +Kipi(2e11 — HF py)
i1 = I- Ky H)(FEF' + %))

where Ky 1 =FSF' +Z,)H' HFZF' +X,)H' +3,)!
1s called the Kalman gain matrix.

* Consider the update for the mean state estimate u. The term Fu, 1s the
predicted state at t+1, so HFu, is the predicted observation. Therefore, the
term z,,, — HFu, represents the error in the predicted observation. This 1s
multiplied by K, to correct the predicted state; hence, K,, | 1s a measure of

how seriously to take the new observation relative to the prediction.
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The general case

* To illustrate these equations at work, we have applied them to the problem of
tracking an object moving on the X—Y plane. The state variables are X = (X, Y,
X, V), soF, X, H, and X, are 4 x4 matrices.

* Figure 15.11(a) shows the true trajectory, a series of noisy observations, and
the trajectory estimated by Kalman filtering, along with the covariances
indicated by the one-standard-deviation contours. The filtering process does a
good job of tracking the actual motion, and, as expected, the variance quickly

reaches a fixed point.
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The general case

2D filtering 2D smoothing

12r 12r
—=—  ftrue —e—  {rue

* observed * observed

smoothed * smoothed
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8 10 12 14 16 X 18 20 22 24 26 68 10 12 14 16 X 18 20 22 24 26
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Figure 15.11 (a) Results of Kalman filtering for an object moving on the X-Y plane,
showing the true trajectory (left to right), a series of noisy observations, and the trajectory
estimated by Kalman filtering. Variance in the position estimate is indicated by the ovals. (b)
The results of Kalman smoothing for the same observation sequence.




The general case

* We can also derive equations for smoothing as well as filtering with linear
Gaussian models. The smoothing results are shown in Figure 15.11(b). Notice
how the variance in the position estimate 1s sharply reduced, except at the

ends of the trajectory, and that the estimated trajectory is much smoother.
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Applicability of Kalman filtering

* The “classical” application 1s in radar tracking of aircraft and missiles.
Related applications include acoustic tracking of submarines and ground
vehicles and visual tracking of vehicles and people.

* The range of application 1s much larger than just the tracking of motion: any
system characterized by continuous state variables and noisy measurements
will do. Such systems include pulp mills, chemical plants, nuclear reactors,

plant ecosystems, and national economies.
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Keeping Track of Many Objects

* In this section, we see what happens when two or more objects generate the
observations. What makes this case different from plain old state estimation is
that there 1s now the possibility of uncertainty about which object generated
which observation.

* In the control theory literature, this is the data association problem—that is,
the problem of associating observation data with the objects that generated

them.
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Keeping Track of Many Objects

* The data association problem was studied originally in the context of radar
tracking, where reflected pulses are detected at fixed time intervals by a
rotating radar antenna. At each time step, multiple blips may appear on the
screen, but there 1s no direct observation of which blips at time ¢ belong to
which blips at time 7 — 1.

* Figure 15.19(a) shows a simple example with two blips per time step for five
steps. Let the two blip locations at time ¢ be ¢,! and e?. Let us assume, for the
time being, that exactly two aircraft, 4 and B, generated the blips; their true
positions are X and X2. Just to keep things simple, we’ll also assume that the

each aircraft moves independently according to a known transition model.
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Keeping Track of Many Objects
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Figure 15.19  (a) Observations made of object locations in 2D space over five time steps.
Each observation is labeled with the time step but does not identify the object that produced
it. (b—c) Possible hypotheses about the underlying object tracks. (d) A hypothesis for the
case in which false alarms, detection failures, and track initiation/termination are possible.




Keeping Track of Many Objects

* Suppose we try to write down the overall probability model for this scenario,
just as we did for general temporal processes in Equation (15.3). As usual, the

joint distribution factors into contributions for each time step as follows:

A B 1 2\ __
P(xoztaafo:tael t:el t) =

P(z)P(x5 )ﬂ P(af | z1) P27 | zily) Ple

zvzlm 'ZB)

(15.24)

1
P(Xo.,E1) = P(Xo) T1 P(X; | X;_1) P(E; | X))
1=1
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Keeping Track of Many Objects

«  We would like to factor the observation term P(e},e? |z, 2P) into a product

of two terms, one for each object, but this would require knowing which
observation was generated by which object. Instead, we have to sum over all
possible ways of associating the observations with the objects.

* Some of those ways are shown in Figure 15.19(b—c); in general, for n objects

and T time steps, there are (n!)” ways of doing it—an awfully large number.
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Keeping Track of Many Objects

*  We’ll write w, to denote the one-to-one mapping from objects to observations
at time ¢, with w(A4) and w/(B) denoting the specific observations (1 or 2) that
w, assigns to 4 and B. (For n objects, w, will have n! possible values; here,
n!=2.)

* Because the labels “1” and “2” on the observations are assigned arbitrarily,
the prior on w, is uniform and w, is independent of the states of the objects, x4

and x /5.

% é!JJ_??iJZJf 18,

nal Cheng Kui gUnlversty




Keeping Track of Many Objects

So we can condition the observation term P(e},e? |z, z2) on w, and then simplify:

P(ej, ¢ |af,af) = Y Pej, e} |2, af,wi) P(w;| zf,z7)

Y P |z PP | 2B) P(w; | 2, = F)

Wz

oS P2ty pE ™ |af).

Wi

Plugging this into Equation (15.24), we get an expression that is only in terms of
transition and sensor models for individual objects and observations.
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Keeping Track of Many Objects

* As for all probability models, inference means summing out the variables
other than the query and the evidence. For filtering in HMMs and DBNs, we
were able to sum out the state variables from 1 to # — 1 by a simple dynamic
programming trick; for Kalman filters, we took advantage of special
properties of Gaussians.

* For data association, we are less fortunate. There is no (known) efficient exact
algorithm, for the same reason that there is none for the switching Kalman

filter.
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Keeping Track of Many Objects

* As aresult of the complexity of exact inference, many different approximate
methods have been used. The simplest approach is to choose a single “best”
assignment at each time step, given the predicted positions of the objects at
the current time step. This assignment associates observations with objects
and enables the track of each object to be updated and a prediction made for
the next time step.

* For choosing the “best” assignment, it is common to use the so-called
nearest-neighbor filter, which repeatedly chooses the closest pairing of

predicted position and observation and adds that pairing to the assignment.
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Keeping Track of Many Objects

» The nearest-neighbor filter works well when the objects are well separated in
state space and the prediction uncertainty and observation error are small.

* When there 1s more uncertainty as to the correct assignment, a better approach
1s to choose the assignment that maximizes the joint probability of the current
observations given the predicted positions. This can be done very efficiently
using the Hungarian algorithm, even though there are n! assignments to

choose from.
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Keeping Track of Many Objects

* Any method that commits to a single best assignment at each time step fails
miserably under more difficult conditions. In particular, if the algorithm
commits to an incorrect assignment, the prediction at the next time step may
be significantly wrong, leading to more incorrect assignments, and so on.

* Two modern approaches turn out to be much more effective. A particle
filtering algorithm for data association works by maintaining a large

collection of possible current assignments.
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Keeping Track of Many Objects

* An MCMUC algorithm explores the space of assignment histories—for
example, Figure 15.19(b—c) might be states in the MCMC state space—and
can change its mind about previous assignment decisions. Current MCMC
data association methods can handle many hundreds of objects in real time

while giving a good approximation to the true posterior distributions.

’0,‘ @ @ @\
"@ false alarm — T;if;{) n \“@
© (G
(&J %‘ 7o) % Figure 15.19  (a) Observations made of object locations in 2D space over five time steps.
o 3 Each observation is labeled with the time step but does not identify the object that produced
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it. (b—c) Possible hypotheses about the underlying object tracks. (d) A hypothesis for the
case in which false alarms, detection failures, and track initiation/termination are possible.
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